Applications of nanophotonics and quantum optics to classical and quantum information technology
Type:
Colloquium
Date/Time:
2009-01-12 16:00
Location:
Weniger 153
Event speaker:
Dr. Ray Beausoleil, Information and Quantum Systems Hewlett Packard Laboratories, Palo Alto
Title:
Applications of nanophotonics and quantum optics to classical and quantum information technology
Contact:
Abstract
Moore's Law has set great expectations that the performance/price ratio of commercially available semiconductor devices will continue to improve exponentially at least until the end of the next decade. Although the physics of nanoscale silicon transistors alone would allow these expectations to (almost) be met, the physics of the metal wires that connect these transistors will soon place stringent limits on the performance of integrated circuits. We will describe a Si-compatible global interconnect architecture --- based on chip-scale optical wavelength division multiplexing --- that could precipitate an "optical Moore's Law" and allow exponential performance gains until the transistors themselves become the bottleneck. Based on similar fabrication techniques and technologies, we will also present an approach to an optically-coupled quantum information processor for computation beyond Moore's Law, encouraging the development of practical applications of quantum information technology for commercial utilization. We will present recent results demonstrating coherent population trapping in single N-V diamond color centers as an important first step in this direction. Finally, we will ask the question, "Why should we study quantum computation --- really?", and propose an answer.
Refreshments will be served half an hour before the start of the colloquium in Weniger 305.
